Minimization of the Ginzburg-Landau energy functional by a Sobolev gradient trust-region method

نویسندگان

  • Parimah Kazemi
  • Robert J. Renka
چکیده

We describe a generalized Levenberg-Marquardt method for computing critical points of the Ginzburg-Landau energy functional which models superconductivity. The algorithm is a blend of a Newton iteration with a Sobolev gradient descent method, and is equivalent to a trust-region method in which the trustregion radius is defined by a Sobolev metric. Numerical test results demonstrate the method to be remarkably effective. keywords: Ginzburg-Landau; gradient system; least squares; LevenbergMarquardt; Sobolev gradient; trust region

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy minimization using Sobolev gradients: application to phase separation and ordering

A common problem in physics and engineering is the calculation of the minima of energy functionals. The theory of Sobolev gradients provides an efficient method for seeking the critical points of such a functional. We apply the method to functionals describing coarse-grained Ginzburg-Landau models commonly used in pattern formation and ordering processes.

متن کامل

Sobolev Gradients and the Ginzburg-Landau Functional

We describe a Sobolev gradient method for finding minima of the Ginzburg–Landau functional for superconductivity. This method leads to a particularly simple algorithm which avoids consideration of the nonlinear boundary conditions associated with the Ginzburg–Landau equations.

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Compactness in Ginzburg-Landau Energy by Kinetic Averaging

We consider a Ginzburg-Landau energy for two dimensional divergence free fields appearing in the gradient theory of phase transition for instance. We prove that, as the relaxation parameter vanishes, families of such fields with finite energy are compact in L p(). Our proof is based on a kinetic interpretation of the entropies which were introduced by Desimone, Kohn, Müller and Otto. The so-ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2013